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Abstract: 
We propose a multiscale model of plasticity of pure MgO single crystals. The core structure of the rate-

controlling ½<110> screw dislocations has been modelled with the Peierls Nabarro Galerkin method. This 

model relies on γ-surfaces calculated ab initio for the {110}, {100} and {111} planes. The <110> screw 

dislocation spread mostly in the {110} planes. Its Peierls frictions are 150 MPa and 1.6 GPa for glide in {110} 

and {100} respectively. The kink-pair theory is applied to model thermal activation of dislocation glide over the 

Peierls barrier below the athermal temperature Ta and to built a velocity law in this regime. The critical resolved 

shear stresses are deduced below Ta from the Orowan law. Above Ta, the athermal stress τµ is obtained from 

discrete dislocation dynamics simulations to account for dislocation-dislocation interactions. This model is found 

to reproduce satisfactorily the critical resolved shear stresses observed experimentally, provided the contribution 

of impurities (unavoidable in experiments) is subtracted. 

 

Keywords : MgO, dislocations, Peierls Nabarro Galerkin model, thermal activation, 

dislocation dynamics simulations 

 

 

1. Introduction 

 

The Earth dissipates its internal heat to space through convection of the solid mantle which 

extends from 670 to 2900 km depth. It is thus a major concern in geophysics to understand 

how the mantle deforms. This issue is very challenging since mantle convection is associated 

with very high-pressure conditions (up to 135 GPa at the core-mantle boundary) and 

extremely low strain-rates (ca. 10-14 s-1). (Mg,Fe)O is the second most important phase of the 

lower mantle (after (Mg,Fe)(Si,Al)O3 perovskite). Understanding how this oxide deforms is 

thus critical to model flows in the mantle. In this perspective, several studies have been 

carried out recently to investigate the plasticity of (Mg,Fe)O or of MgO taken as a proxy of 

(Mg,Fe)O [1-5]. In most cases, experimental conditions were chosen such as to reproduce 

some of the characteristics of natural conditions (high-pressure, large strain rates, etc). 

However, despite significant progresses, experimental deformation under mantle conditions 

remains out of reach. Numerical modelling represents an alternative approach to investigate 

plasticity. A preliminary work in that direction [6] has shown the possibility of taking high-

pressure conditions into account. The goal of the present study is to contribute to the 

development of this numerical approach. 

In this paper, we will focus on plastic deformation of pure MgO at ambient pressure and 

under laboratory strain-rates. Indeed, MgO is a ceramic, stable at room pressure, for which a 
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large body of mechanical and microstructural data are available [7-11]. It is thus a good 

material to establish and verify our modelling approach. MgO is an ionic crystal with the 

rock-salt structure of space group 

! 

Fm3
"

m . The easiest slip systems at ambient pressure are 

½<110>{110} followed by ½<110>{100} (e.g. [12]) with a Burgers vector b = 3Å . Indeed, 

experimental studies show that the critical resolved shear stress (CRSS) for slip on {110} is 

an order of magnitude lower than on {100} [13,14]. Yield stresses, as in other ionic crystals, 

are sensitive to impurities contents [11,15]. Furthermore, both slip systems are characterized 

by a temperature dependence of CRSS believed to be governed by a Peierls mechanism (e.g. 

[16] or [17] and references therein).  

At low temperature, the dislocation mobility is likely to be controlled by lattice friction which 

depends strongly on the fine structure of the core at the atomic scale [18]. Dislocation cores 

can be determined using either direct atomistic calculations [19-25] or based on the Peierls-

Nabarro (PN) model [26-30]. At this stage, lattice friction is estimated through the Peierls 

stress which is often interpreted as the stress necessary to move a straight dislocation at 0K. 

For MgO, dislocation core structures have been modelled at the atomistic scale for the 

½<110>{110} edge dislocation [31] or for the <100> screw dislocation [32,33]. More 

recently, the PN model has been applied to ½<110> dislocations [6,34]. 

To model plasticity, one needs to account for the thermally activated mechanism involved in 

dislocation motion at finite temperature, i.e. the kink-pair mechanism. Since the work of 

Seeger and Schiller [35], several approaches (among those we find the Line Tension model 

[36-40]) have been proposed to model kink-pairs mechanisms, including atomistic 

calculations [20,41-44]. Here, we propose to use the elastic-interaction model developed by 

Koizumi et al. [45,46] which has already been applied to MgO [47] and provides the stress 

dependence of the formation enthalpy for critical kink-pairs configurations. 

Finally, a dislocation velocity law based on the kink-pair mechanism is introduced to 

calculate single crystal plastic properties. At low temperature, i.e. below a transition 

temperature (called the athermal temperature Ta), lattice friction is high. The plastic flow 

stress is mostly controlled by the dislocation mobility (and not by the forest obstacles). It is 

strongly thermally activated and can be described by the Orowan equation. Above Ta, lattice 

friction vanishes and gliding dislocations only face viscous drag. Plastic flow is therefore 

controlled by dislocations-dislocations interactions and is not thermally activated. Dislocation 

Dynamics (DD) simulations are very well adapted to describe this last regime [48-51]. In this 

study, DD is used below and above Ta.  



Amodeo et al. (2011) Acta Materialia, 59, 2291-2301     doi:10.1016/j.actamat.2010.12.020 
 

 4 

In the next section, we will describe the simulation techniques used in the present work. The 

results of modelling are described in section III with a step-by-step discussion of the model 

progress. In section IV, the results of our multiscale model are critically discussed in 

comparison with experimental data.  

 

2. Simulation techniques 

 

2.1. Peierls-Nabarro Galerkin modelling of dislocation cores 

Early models have been proposed for dislocation cores in MgO based on direct atomistic 

calculations (e.g. [31]). However, they were restricted to edge dislocation with little 

information on lattice friction. The use of the PN model has the advantage to give access to 

lattice friction in the form of the Peierls stress. Miranda and Scandolo [34] have proposed a 

first model of edge dislocations based on the PN model with results comparable to previous 

atomistic calculations [31]. In [6], similar calculations, extended to screw components, 

showed that the introduction of γ-surfaces calculated ab initio is a tool to incorporate the 

influence of pressure in the model. However, these calculations were intrinsically limited by 

the PN approximation of a planar core [29] and in [6], ½<110> screw dislocations were 

characterized by two distinct core structures depending on the glide plane. To solve this 

discrepancy and calculate more realistic dislocation core structures, one must use an extension 

of the PN model to account for multiple glide planes. Among the various possibilities [27, 52-

54], we chose to use the Peierls-Nabarro Galerkin (PNG) method [55,56] which offers the 

possibility to calculate multiple glide planes and complex (possibly three-dimensional) cores. 

As in the initial PN model, the dislocation core structure is the outcome from the 

minimization of an elastic energy (through an approximation of a continuous field 

representation) and an interplanar potential derived from γ-surfaces calculations. γ-surfaces 

correspond to the excess energy per unit area due to a homogeneous shear along a given slip 

plane. γ-surfaces may thus capture the lowest energy paths available for dislocation core 

spreading. For the sake of clarity, let us describe the method by considering a unique slip 

plane Σ. In the PNG model, two distinct fields are used: u(r) a three-dimensional 

displacement field of the volume V and a two-dimensional displacement discontinuity field 

f(r) which is expressed in the normal basis of the Σ plane. Thus, u(r) allows one to represent 

the continuous deformation around the dislocation core whereas f represents the displacement 
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jump when crossing Σ. The problem consists in minimizing the following energy E with 

respect to u and f: 

! 

E = {E e[u, f ]" 1
2
#˙ u 2}dV + E isf [ f ]d$

$
%V%         (1) 

where Ω corresponds to the material density. Ee corresponds to the elastic strain energy 

whereas Eisf is the inelastic stacking fault energy which depends on the material and controls 

the spreading of dislocation. Eisf is a function of the γ-surface energy from which all the linear 

elastic part has been subtracted [55]. Minimization with respect to f is achieved by means of a 

time dependent Ginzburg-Landau equation whereas an element free Galerkin method is used 

to compute the evolution of u(r). In PNG calculations, once the equilibrium configuration of 

the dislocation core is reached, the finite elements cell can be strained in order to determine 

the Peierls stress. The latter corresponds to the critical applied stress for which a dislocation 

displacement made at 0K is irreversible in its glide plane. 

 

2.2. Density functional theory (DFT) calculations of γ-surfaces 

Following previous work [6], γ-surfaces calculations are based on supercells and are 

performed with the VASP code [57,58], based on the density functional theory (DFT). 

Calculations were performed within the Generalised Gradient Approximation (GGA) and 

using the all-electron Projector Augmented-Wave (PAW) method [59,60]. The outmost core 

radius for Mg and O atoms used in the simulation are 2.0 and 1.52 a.u respectively. 

Throughout this study, the first Brillouin zone was sampled using a Monkhorst-Pack grid and 

the electronic density is expanded on a plane wave basis set using a single cut-off energy of 

500 eV assuring a convergence better than 10-3 meV per atom on the total energy. Extended 

details on those computations including the calculations of the unit cell parameter and the 

elastic constants can be found in [6]. The three supercells (of normal <100>, <110> and 

<111>) are built on a Cartesian reference frame defined by the normal of the stacking fault 

plane and by the shear direction. For the three supercells, a minimum of 16 atomic layers is 

used and external free surfaces are chosen to minimize possible spurious effect resulting from 

a dipolar field between charged surfaces. On top of that, a vacuum buffer is added in the 

direction normal to the slip plane to avoid interaction between the stacking faults replicas 

resulting from the use of periodic boundary conditions. The excess energies γ are calculated 

by imposing a given shear displacement value to the upper part of the supercell. During the 

calculations, all atoms but those located close to the buffer layer are allowed to relax in the 

directions perpendicular to the shear direction in order to minimize the energy of γ-surfaces.  
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2.3. Kink-pair modelling 

As mentioned in the introduction, we propose to use the elastic-interaction model [45] to 

calculate the energy ΔH for kink-pair nucleation as a function of stress. From 

thermodynamics considerations, the rate of kink-pair nucleation is controlled by the free 

energy required to displace a critical dislocation segment into the next Peierls valley, however 

this energy can be approximated to the activation enthalpy when neglecting the associated 

entropy [61]. ΔH results from three contributions: the elastic interaction energy ΔE, the 

variation of the Peierls energy ΔP between a straight line and a kinked one and W, the work of 

the applied stress τ. Assuming a rectangular shape for the kink-pair configuration of height h 

and width w at low stress, the variation of enthalpy takes the form: 

ΔH = ΔE+ΔP-W          (2) 

where the three terms depend on the couple of variable (h,w).  

In Eq. (2), the formation of the kink-pair induces a variation ΔP that depends on the Peierls 

potential VP as expressed in [45]. The work W is simply τbhw and for a screw dislocation, the 

variation of the elastic energy ΔE in case of isotropic materials [62] is given by Eq (3): 

! 

"E(h,w) =
µb2

2#

w2 + h2 $ w $ h + w log 2w
w + w2 + h2

$
1

1$%
(w $ w2 + h2 + h log h + w2 + h2

w
$ h log h

e&
)

' 

( 

) 
) 
) 
) 

* 

+ 

, 
, 
, 
, 

   (3) 

where µ corresponds to the shear modulus, ν to the Poisson ratio and b to the Burgers vector 

of the dislocation. The elastic parameters µ and ν used are derived from the set of elastic 

constant proposed in [6]. The shear modulus µ is taken as 116.5 GPa and the Poisson ratio ν is 

deduced from anisotropic elastic parameter K(θ) (θ depending on the dislocation character). 

Assuming K(0)=µ for screws and K(90)=µ/(1-ν) for edges, we used ν=0.18 and 0.27 for 

{110} and {100} planes respectively. 

 

In Eq. (3), ρ is a cut-off length. Fixing ρ is equivalent to choose an absolute energy of the 

dislocation [45,46]. Here following previous studies made with the elastic-interaction model 

[45, 47, 63], a value ρ=0.05ζ (ζ is to the half-width of the dislocation core) is considered. 

Based on expression of ΔE, ΔP and W, the critical shape (h*,w*) and critical enthalpy of the 

configuration ΔH* can thus be calculated in the saddle point configuration as a function of 

stress τ.  
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2.4. Dislocation Dynamics (DD) 

DD simulations have been performed using the open source simulation code mM (see [64] for 

a more specific description of the code). This simulation tool is a discrete three-dimensional 

dislocations dynamics code accounting for complex boundary conditions. Here, periodic 

boundary conditions are used in the calculations to model plasticity in bulk conditions 

[65,66]. As DD simulations and constitutive rules have been presented in several papers (e.g. 

[67,68]), we just recall here the basics of the technique. DD simulations with the mM code 

rely on a discretization of both space and time. For each slip systems, dislocation lines are 

discretized into a finite set of segments of fixed characters, screw, edge and mixed. Straight, 

glissile segments, are moved on a 3D cubic lattice exhibiting the lattice symmetry of MgO. 

To take into account the two possible slip systems families of MgO, ½<110>{110} and 

½<110>{100}, the underlying lattice is composed of 96 elementary segments belonging to 

the 12 possible slip systems. The long-range interactions are treated using the Peach-Koehler 

formula. An effective resolved shear stress in the glide plane is calculated on each discretized 

segment, taking into account the stress field associated with the whole set of dislocation lines 

present in the simulated volume at each increment step, plus the applied stress accounting for 

the loading conditions, plus a line tension term accounting for the elastic energy lost when 

replacing locally curved dislocation sections by straight segments. Local rules are also 

prescribed to account for the contact reactions, such as annihilations or formation of junctions 

(see [69] or [70] and references therein). In response to the applied load, segments move with 

a velocity law which depends on the dislocation character. High mobility law are 

characterised by a velocity v simply proportional to stress whereas, in presence of lattice 

friction, mobility law are generally based on an Arrhenius form to account for the stress and 

thermally activated process [71-73, 79]. 

 

3. Results and discussion 

 

3.1. From γ-surfaces to dislocation core structure 

In MgO, previous calculations of Peierls stresses performed on ½<110> dislocations [6, 31, 

34] suggest that, for both slip systems considered, Peierls stresses are lower for edge 

dislocations than for screw dislocations. The same conclusion is reached from the analysis of 

experimental results [16]. As a consequence, we will assume that plastic deformation is 



Amodeo et al. (2011) Acta Materialia, 59, 2291-2301     doi:10.1016/j.actamat.2010.12.020 
 

 8 

governed by the mobility of screw dislocations and modelling at the elementary scale is 

performed on this character only. 

 

γ-surfaces corresponding to {110}, {100} and {111} are presented on Fig. 1. ½<110> shear in 

{110} corresponds to the lowest energy path in agreement with previous calculations. Indeed, 

the maximum unstable stacking fault energy along <110> goes from 1.05 J/m2 in {110} to 

2.46 J/m2 in {111}. In between we find 2.18 J/m2 in {100}. No easier energy paths can be 

inferred from the γ-surfaces, even on {111} planes, where the stacking fault energy at 

1/6<112> reaches 1.6 J/m2 without displaying a clear minimum (corresponding to a 

potentially stable stacking fault).  

 

   
(a) (b) (c) 

Fig. 1. γ-surfaces (in J.m-2) calculated ab initio for {110} (a), {100} (b) and {111} (c). 
 

To apply the PNG model, a node structure is built around the dislocation line with the 

symmetry of the crystalline structure. For a ½[110] Burgers vector, taken as an illustration, 

four possible families of plane must be considered 

! 

(110), 

! 

(001), 

! 

(111) and 

! 

(111). Within each 

family, several planes are superimposed in agreement with the crystal structure (Fig. 2a). A 

classical node resolution of 12 nodes per Burgers vector b has been used. One may note that 

increasing the resolution by a factor two did not affect the result. During the relaxation 

process, the dislocation core is allowed to spread in the four planes in response of the γ-

surfaces. Between those planes, the medium exhibits a linear elastic behaviour. In the PNG 

calculation, the sheared plane associated with the dislocation line can be introduced 

horizontally or vertically in the finite element mesh, i.e. in different crystallographic planes. 

Whatever the sheared plane used to create the initial Volterra dislocation, its core is found to 

spread mostly in a {110} plane leading to the dislocation core structure shown on Fig. 2b. On 

the differential displacement map (Fig. 2b), only displacements along the Burgers vector are 

plotted since no edge components are observed. The size of the core and the amount of 
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Burgers vector density distributed in each plane can be evaluated using the disregistry 

function φ as presented on Fig. 3. Disregistry φ is closely linked to the f field used in PNG 

calculations. Indeed, f corresponding to a displacement jump, can be rewritten in a 

symmetrical form by removing the initial disregistry of b/2 and using a φ function [62]. 

Contrary to the initial PN model, φ can be recorded here along the γ-surfaces introduced in the 

calculation and as we cross the initial displacement, φ corresponds to the amount of Burgers 

vector distributed in each γ-surface plane. It appears that almost 80% of b is spread in {110} 

whereas less than 20% is found in {100}. Only a small residual part (below 1%) is found in 

the {111} planes.  

Evaluations of the Peierls stresses have been done following the method presented in [56] by 

straining the simulation cell. As a consequence of the core structure, the Peierls stress is 

significantly lower in {110} than in {100}: 150 MPa for ½<110>{110} compared to 1600 

MPa for ½<110>{100}.  

As expected, PNG calculations lead to a single dislocation core structure for screw 

dislocations of ½<110> Burgers vector whatever the plane where the dislocation is 

introduced. The reason is that the core of the screw dislocation spreads mostly in {110} 

following the lowest energy path evidenced by γ-surface calculations. In a {110} plane, the 

half-width of the dislocation core is 3Å, a value which is slightly lower than previous 

evaluation of 4.4Å [6]. Realizing that the core that we calculate corresponds to a two-fold 

dislocation (only 80 % of b is spread in {110}), when classical PN calculations considers that 

the whole Burgers vector is distributed in the glide plane, the present work leads logically to a 

larger value of the Peierls stress than previously found in [6, 47]: 150 vs. 40MPa respectively. 

The present solution is likely to be more realistic since the dislocation core is better described 

and since the summation method used in [6, 47] to evaluate the Peierls stress is an 

approximation [28].  
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(a) (b) 

 

Fig. 2. (a) γ-surface positions used in the PNG simulations, superimposed on the MgO crystal structure view 
along [-110] (yellow and red atoms correspond respectively to Mg and O). (b) Differential displacement plot of 
the ½<110> screw dislocation as determined from PNG calculations (orientation identical to (a)). The largest 

displacement arrows reveal that most of the core is spread in the (110) plane. 
 

 

 
Fig. 3. Disregistry function φ(x) and φ(y) recorded respectively in {110} and {100} planes. φ(x), circle symbols, 

reachs an upper value of 0.4b whereas φ(y), square symbols, are limited to 0.1b (continuous lines represent a 
guide for eyes). 

 

3.2. Kink-pair energy calculations 

For the calculation of ΔP, we assume a sinusoidal Peierls potential VP of periodicity a’ (see 

Table 1) and parameterized with the Peierls stresses calculated above. Results of the 

calculation are presented on Fig. 4 and 5, with the evolution of the critical energy ΔH* as a 

function of the applied stress on Fig. 5. ΔH*(τ=0)=ΔH0 corresponds to twice the energy Uk of 

an isolated kink with a full height a’. Indeed, when τ approaches 0, the separation distance w* 

of the kink pair is showed to increase considerably (Fig 4b), leading to a configuration where 

the interaction between kinks can be neglected. The values of ΔH0 are given in table 1. As the 
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elastic-interaction model is restricted to the low stress regime [74], an extrapolation up to the 

Peierls stress has thus been performed using the classical formalism of Kocks et al. [75]: 

! 

"H(# ) = "H0 1$ # #P( )p( )
q
          (4) 

In order to fit the empirical parameters p and q of Eq. (4), we used the saddle point energy 

ΔH* (calculated at low stress) as well as the activation volume V=bh*w* (Fig. 4a) that has 

been compared to the activation volume V given by the derivative of Eq. (4): 

! 

V (/b3) =
"H0

b3
1 #P( )pq #

#P
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q*1

       (5) 

The fit of Eq. (4) is shown in dashed line on Fig. 5. Whatever the slip system, the critical 

widths w* is found to decrease rapidly to an almost constant value for intermediate stresses 

(Fig. 4b). 

 

 

 a’' τp (MPa) ΔH0 (eV) p q wc/b 

½<110>{110} a/2 150 1.14 0.5 2 113 

½<110>{100} b/2 1600 2.58 0.5 1 21 
 
Table 1. Parameters related to the two slip systems considered in this study. a’ is the periodicity of the Peierls 
potential; τp is the Peierls stress; ΔH0 is the critical enthalpy for kink-pair nucleation under τ = 0 GPa; p and q 
correspond to the empirical parameters of ∆H(τ) in equation (4). wc is the critical width of kink-pairs, here 
normalized by the Burgers vector modulus b. 
 

 

In a recent critical review [17] of available experimental data on ionic compounds from 

literature, Takeuchi et al. concluded to an activation energy Uk around 0.3 eV for {110} 

which is close to our result: 0.55 eV. This value is in agreement with activation energies 

derived by measurement of Bordoni peaks which are in the range 0.2-1 eV, considering that 

these data are affected by small amounts of impurities [76]. It is more difficult to assess our 

value of Uk for {100} since Takeuchi et al. [17] proposed only a rough estimate (2 times 

lower than the value of Table 1) and since no measurement corresponding to {100} are 

available. However, the line tension model can also be used to calculate Uk. In that case, the 

energy of an isolated kink depends on a parameter E0 corresponding to the energy of the 

dislocation in its ground state. 

! 

Uk " a' E0
ba'#P
$

          (6) 
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Assuming that E0 should be mostly dominated by elastic energy [39], whatever the glide 

plane, E0 could be considered independent of the glide plane and it turns out that the ratio 

between the two slip planes follows: 

! 

Uk
{100}

Uk
{110} "

b
a( )

3 #P
{100}

#P
{110}          (7) 

which is close to 2 and compares well with the ratio between ΔH0 calculated here using the 

elastic-interaction model. Incidentally, this consistency validates our choice of the cut-off 

parameter ρ in Eq. (3). 

The evolution of the kink-pair width w at low stress compares well with the Seeger and 

Schiller model [35]. Indeed, we checked that the kink-pair width (Fig. 4b) varies at low stress 

as a function of 1/√τ. We note finally that ½<110>{110} dislocations are characterized by 

wider kink-pairs compared to ½<110>{100} dislocations. This feature is strongly related to 

the value of σp/µ. Indeed, for slip systems with low Peierls stresses, or low Peierls potentials 

(which is here the case for ½<110>{110}), kink-pairs would be wider since the line tension 

governs the kink formation [77]. 

  
(a) (b) 

Fig. 4. Evolution of the kink pair shape as a function of stress for ½<110>{110} (open circles) and ½<110>{100} 
(open squares). (a) Activation volume h*w*b. Symbols correspond to the calculations whereas the line correspond 
to the extrapolation based on equation (5), using the fitted values of p and q listed in Table 1. (b) Variation in kink 

pair width w* showing a strong decrease at low stress followed by a constant value wc. 
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Fig. 5. Evolution of ΔH* as a function of stress (normalized to the Peierls stress). Symbols (open circles, slip 

system ½<110>{110}, open squares, slip system ½<110>{100}) correspond to the calculations whereas the line 
correspond to the extrapolation based on equation (4) and numerical values from Table 1. 

 

3.3. From dislocation mobility to CRSS 

In order to determine the CRSS in MgO, DD simulations have been performed below and 

above athermal temperature Ta. As mentioned in section 2, DD simulation relies on a velocity 

law which depends on the stress and on temperature. The latter dependency is very important 

below and is very weak above Ta, this is why the determination of the CRSS will thus be split 

into two parts. Above Ta, the dislocations have a high mobility and the macroscopic 

behaviour is controlled by dislocations-dislocations interactions. The flow stress is then 

essentially temperature independent. Below Ta the dislocation mobility is very low and the 

applied stress must increase to force dislocation motion, hence dislocation-dislocation 

interaction becomes negligible and the flow stress is controlled by the imposed strain rate. In 

order to run quantitative DD simulations, a reliable velocity law (function of temperature and 

stress) must then be defined. 

 

3.3.1. Velocity laws 

The velocity law defined in the DD simulation for screw dislocation segments is based on the 

nucleation and propagation of kink-pairs along a straight section of dislocation loops. Here, 

we assume that kink-pairs nucleation represents the controlling stage. Implicitly, this is 

equivalent to neglecting the potential second order lattice friction borne by edge type kinks 

created on a screw dislocation. This assumption is supported by the fact that Peierls stresses 

associated to edge dislocation in MgO [6, 31, 34] are significantly lower than those proposed 

here for screw dislocations. As a consequence, taking into account possible backward jumps 

of kink-pairs along a dislocation line, the velocity law takes the following form [62]: 
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Where ΔH+ and ΔH- correspond to the nucleation enthalpies of forward and backward jumps, 

a’ and b correspond respectively to the width of the Peierls valley and to the Burgers vector. L 

is the length of a straight segment in the screw direction and w is the critical width of the 

kink-pair. Eq. (8) can be rewritten considering only the forward jump [78], leading to:  

! 

v(",T) = a'#Db
L
w2 exp

$%H0

kT
& 

' 
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) 

* 
+ sinh

%H0 $%H
+ "( )

kT
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' 
( 

) 

* 
+       (9) 

In this expression, ΔH+ has formally the sense of ΔH* calculated in the previous section with 

the kink-pair theory. ΔH* and w depend on stress. However, as w evolves rapidly to reach an 

almost constant value wc, we simplify Eq. (9) by using a constant wc value, considering that 

the strongest stress dependence lies in the kink-pair nucleation enthalpy term ΔH*. Finally, 

the expression of the velocity law for screw dislocations in MgO is: 
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     (10) 

for which all parameters are displayed in Table 1 for the glide planes {110} and {100}. 

3D-DD simulations require to handle also the dynamics of the faster non-screw segments. 

The assessment of their velocity would ideally imply the same work as the one made for the 

screw dislocation character. However, on a technical point of view this effort is useless and a 

phenomenological approach is commonly adopted in the simulations of materials with lattice 

friction [79-82]. Non-screw dislocations being much faster than screws, they leave rapidly the 

sample, leaving long screw dislocations behind. This stage (called microplasticity) contributes 

to a negligible amount of strain. Further finite deformation is produced by screw dislocations 

which mobility controls plasticity. Therefore, precise value of non-screw segment velocity 

poorly affects the integration of a 3D dislocation dynamics. Hence, it is enough to consider 

that non-screw segments glide with the same type of velocity law as the screw segments, but 

without the segment length contribution appearing in Eq. (10) and multiplied by a factor Kv. 

Kv=vedge/vscrew is the velocity ratio between edge and screw segments. Taken larger than one, 

Kv speeds up the edge segments mobility at a given stress. Following previous work [79-82], 

we set a variation of Kv with temperature ranging from 10 000 at 0 K to 1 at Ta. 

It is instructive to note that Eq. (10) leads for ½<110>{110} screw dislocations to a velocity 

of 10-6 m/s at ambient temperature under a typical stress of τP/10 and to 0.1 m/s at 800 K. 

Alternatively, for ½<110>{100}, the calculated velocity with τP/10 corresponds only to a few 

mm/s at 1200 K.  
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Fig. 6. Dislocation velocity of the ½<110> screw dislocation used in this study (equation 10) compared with the 

average velocities of screw dislocations measured experimentally [16]. 
 

These values can be compared to the few existing values determined experimentally. In 

particular, Singh and Coble [16] measured, in a high-purity MgO single crystal, dislocation 

velocities in {110} which compare well with our calculations (Fig. 6). At higher temperature, 

we found that the velocity increases up to 10-1 m/s. This value is consistent with experimental 

velocities measured around 1000 K [11]. Regarding the velocity of non-screw segments, the 

velocity ratio Kv is usually adjusted to reproduce the anisotropic shape of observed dislocation 

loops. Unfortunately, few TEM micrographs are available in MgO on specimens deformed at 

low temperature (most of the TEM has been performed on specimens deformed in the high 

temperature creep regime, e.g. [10] or [83]). However, the few micrographs of specimens 

deformed at room temperature [84,85] suggest an anisotropic mobility between characters 

which supports the use of a large velocity ratio Kv at low temperature. Finally, above Ta, the 

fact that dislocation loops are curved, i.e. exhibit some line tension effect, suggest that screw 

and non-screw segments have comparable velocities, which justifies the choice of Kv=1 at Ta. 

 

3.3.2. Flow stress below Ta 

At low temperature, the critical shear stress is mainly controlled by the intrinsic mobility of 

screw dislocations which is governed by lattice friction. The strain-rate 

! 

˙ "  can thus be 

described by the Orowan law considering a distribution of mobile dislocations with a density 

ρm and an average velocity v (b is the Burgers vector): 

! 

˙ " = #mbv            (11) 

In the thermal regime, all dislocation moving smoothly, one can assume that the mobile 

dislocation density is equal to the total density. The latter can be inferred from experiments, 
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with measured dislocation densities in the range 1011-1012 m-2 [76] or 1-2 1012 m-2 in 

specimens deformed at 1900°C under an applied stress of 60 MPa [8].  

With this information, the CRSS of MgO was calculated with DD simulations by considering 

a single dislocation of characteristic length 1/√ρ of 1 µm in a simulated volume of dimension 

0.7 x 0.7 x 1.98 µm3, corresponding to a dislocation density of 1012 m-2
  (this value is used in 

the whole study). The dislocation line is initially along a diagonal of the basis plane of the 

simulated volume which is parallel to {001}. As an effect of periodic boundary conditions the 

simulated screw segments is virtually infinite, this is why in the computation a maximum 

straight screw length of 1 µm is applied to Eq. (10) during the simulation, i.e. 1 µm>L>0. We 

carried out a series of compression test simulations at various temperatures to determine the 

resulting flow stress at a constant strain-rate (10-4 s-1). By varying the compression axis, the 

dislocation can glide in either {100} or {110}. The results of the corresponding flow stresses 

as a function of temperature are reported on Fig. 7.  

 

 
Fig. 7. Flow stress as a function of temperature in the thermal regime. Calculations, performed by DD 

simulations, are based on the Orowan law including dislocation velocities built in section 3.3.1. Stress values 
closed to zero are indicated by arrows and highlight the athermal threshold temperature Ta. 

 

From this figure, the athermal threshold temperatures Ta is easily determined. Indeed, above a 

temperature of 600 K for ½<110>{110} slip and of 1200 K for ½<110>{100} slip, the flow 

stress has dropped to zero. This reveals that lattice friction is negligible at larger temperatures. 

 

3.3.3 Flow stress above Ta 

Above Ta lattice friction has vanished and the flow stress is governed by dislocations-

dislocations interactions which lead to a stress threshold τµ. In order to determine τµ for either 

½<110>{110} and ½<110>{100}, we performed DD calculations with an initial dislocation 

density of 1012 m-2 equally distributed on the six glide planes of each family. To prevent 

artificial dislocation self-annihilations induced by PBC [66,79], the simulation volume was 
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rotated along the <111> axis and chosen as an orthorhombic cell of 10.7 x 11.7 x 10.8 µm3 

dimensions to ensure a mean free path of a few tens of micrometers before the occurrence of 

dislocation self-annihilation. We then performed multi-slip constant strain rate simulations 

(with solicitation axis [100] or [111] for activation of {110} or {100} slip systems) and 

measured the evolution of the flow stress as a function of strain. Two typical stress-strain 

curves are plotted on Fig. 8. Whatever the activated slip systems, one may note that a constant 

flow stress of around 10 MPa is reached for each slip system. Such value corresponds to a 

Taylor coefficient 

! 

" = # µb $  of 0.3 close to the value observed in most pure metals.  

 

 
Fig. 8. Stress-strain curves recorded at 10-4 s-1 for a dislocation density of 1012 m-2. 

 

 

DD calculations have been performed at 1000 K and 1400 K for ½<110>{110} and 

½<110>{100} respectively. The only constraint for the choice of these temperatures is that 

they are above Ta, since in this regime, varying T does not affect τµ. Following the same line, 

calculations have been performed using relatively high strain rate (i.e. 10-1 s-1 and 10-3 s-1 for 

respectively {110} and {100} simulations described above) for computation efficiency and 

with the same velocity law as for the low temperature regime. It is worth noticing that these 

choices does not influence τµ since we checked that the collective behaviour is controlled by 

forest interactions. In this regime, the flow stress is independent on the strain rate and on the 

velocity of individual dislocation (assuming the strain rate is low enough and the dislocation 

mobility is high enough to maintain a dynamics controlled by forest interaction, i.e. where 

dislocation gliding time is much smaller than their immobile time pinned at forest obstacles).  
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4. General discussion: comparison with experimental CRSS  

 

4.1. Slip system ½<110>{110} 

A lot of deformation experiments have been performed on MgO [9,11,13,86-89] which have 

produced data that can be compared with our calculations (see table 2 and Fig. 9). Fig. 9 

shows a lot of dispersion in experimental data which comes from the presence of impurities as 

already pointed out by several authors [90-92]. Indeed, the strain-rate, which varies only 

within a moderate range in all these studies has little influence on the mechanical properties 

and will not be discussed further. Since MgO is an ionic compound, the influence of 

impurities is strongly related to their charges. Divalent cations seem to have little effect on 

dislocations and in crystals containing such impurities, dislocation glide is mostly governed 

by lattice friction at low temperature. When trivalent cations are predominant [89], both effect 

of lattice friction and impurities strengthening must be considered. Consequently, heat 

treatments under oxidizing or reducing atmospheres have implications on the mechanical 

properties in the presence of impurities like iron which can be either divalent or trivalent [90-

92]. A critical comparison between our calculations and published data is then possible only if 

the influence of impurities (which are not taken into account in the model) is minimized. For 

this reason, the available information on impurity contents and heat treatments corresponding 

to the experiments reported on Fig. 9 are displayed in Table 2. 

 
Reference Label Strain Rate 

(s-1) 

Heat Treatment Impurities 

(ppm) 

[86] A 4.4 10-4 none 5600 

 B 4.4 10-4 1000°C - 1h 5600 

[88] A 4.4 10-4 ND 290 

 B 4.4 10-4 ND 1390 

[9]  1.3 10-5 1250°C - 24h in air 239-244 

[11] A 4.1 10-4 2000°C - 2h in argon gas 140 

 B 4.1 10-4 2000°C - 2h in argon gas 560 

 C 4.1 10-4 2000°C - 2h in argon gas 

+ 1300°C - 24h in air 

560 

[13]  1 10-4 ND 100 

[89]  4.2 10-4 ND A few hundreds 

 
Table 2. Summary of the experimental works used in this study for comparison with multiscale calculations. 
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Fig. 9. Critical resolved shear stress for ½<110>{110} slip systems. Comparison of the model (line) with 

experimental results (See information on these data in Table 2). A fair agreement is found with data 
corresponding to samples with the lowest impurity levels (black symbols). 

 

On Fig. 9, our multiscale model assuming a dislocation density of 1012 m-2 is represented by 

the continuous line. Above Ta (i.e. 600 K), the flow stress is considered as controlled by forest 

hardening (CRSS=τµ). Below Ta, the flow stress is controlled by the dislocation mobility and 

is predicted from the Orowan equation (Eq. (11)) in agreement with the simulation results 

reported in Fig. 7. 

It is shown that a fair agreement is found with experimental results which correspond to the 

lowest impurity contents or to samples that have been annealed under reducing conditions 

(represented by black symbols on Fig. 9 for a sake of clarity). Fig. 9 shows also that the 

influence of impurity hardening becomes negligible at high temperature as well as at very low 

temperature where lattice friction clearly dominates.  

 

4.2. Slip system ½<110>{100} 

 
Fig. 10. Critical resolved shear stress for ½<110>{100} slip system. The model reproduces the experimental 

results provided the addition of a solid-solution hardening contribution which is fitted between 1100 and 
1800K. 
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Less data are available on this slip system, especially concerning the contribution of 

impurities. Fig. 10 shows that experimental data exhibits thermal activation of the flow stress 

until ca. 1800 K, i.e. well above the athermal temperature calculated with the mobility law 

deduced from the kink-pair model. To interpret this behaviour, we make the assumption that 

in this temperature range, the influence of impurity strengthening is still important. Following 

[17], we assume that this strengthening varies linearly with temperature and, assuming a 

linear composition of strengthening mechanisms, we adjust a linear contribution τi from the 

temperature range 1200-1800K. This impurity strengthening τi is supposed to contribute to 

the flow stress in the whole low-temperature domain. Our final model (again represented by a 

continuous line on Fig. 10) is made of the forest hardening contribution (τµ) above Ta, plus an 

impurity hardening (τi) and of lattice friction contribution (Fig. 7) below Ta. With this 

construction, our multiscale approach is found to account very well for experimental results. 

As is the previous slip system, it is shown that the contribution of impurity strengthening 

dominates in an “intermediate” temperature regime.  

 

5. Conclusion 

The goal of this work was to build a multiscale model for the plasticity of pure MgO that 

would not rely on parameters adjusted on experimental data. Instead, we rely on the properties 

of the core of screw ½<110> dislocations calculated with the PNG model which incorporates 

γ-surfaces calculated ab initio for the {110}, {100} and {111} planes. The PNG model gives 

access to the Peierls stress which is used to model thermal activation of glide in {110} and 

{100} based on a kink-pair model. The parameters of this thermal activation model are used 

to derive a velocity law for the screw dislocations in {110} and {100}. The collective 

response of the dislocation microstructure (in the form of the CRSS) is obtained from 

application of the Orowan equation below the athermal temperature Ta and from forest 

interactions above Ta. The present multiscale model rely on a few reasonable assumptions: 

- accuracy of the description of the core of the ½<110> dislocation obtained from the 

PNG model 

- relevance of the elastic-interaction model to describe kink-pair nucleation (considered 

as the rate-limiting mechanism) 

- below Ta, the flow stress is governed by the mobility of screw dislocations and can be 

inferred by application of the Orowan equation. 
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- Above Ta, the flow stress is governed by forest interactions and can be modelled by 

DD. 

- a dislocation density, here of 1012 m-2, either taken from experimental data or 

eventually inferred from high-temperature flow stress calculated by DD simulations. 

The good agreement observed between our model and available experimental data represent 

an indirect validation of these assumptions, although in some cases this might be just due to 

the weak sensitivity to a given parameter (this is the case for the dislocation density in the 

thermal regime for instance). 

Comparison with experimental data has required to highlight the already well known 

influence of impurities. For glide on {110} the influence of impurities is extremely important 

below Ta, except may be very close to 0K where lattice friction becomes more important. On 

{100}, the role of impurities has been less discussed. Comparison with our model shows that 

their influence is dominant in the 1200-1800 K temperature range.  

Having a model which does not depend on experimental parameters is of primary importance 

to extend the description to extreme conditions which are difficult to achieve in the 

laboratory. Since MgO is an important phase of the interior of the Earth, it is necessary to 

understand the influence of pressure on its plastic properties. The fact that dislocation core 

modelling relies on an accurate description of the electronic properties (through ab initio 

calculations of γ-surfaces) make it possible to incorporate the influence of pressure [6]. 

Combining this possibility and the present model opens the route for the modelling of plastic 

deformation of MgO in the conditions of the deep Earth.  
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