Français - English - Intranet
Unité Matériaux et Transformations empty space

Unité Matériaux et Transformations
CNRS UMR 8207 - Université de Lille

Seminars at UMET

2026 - 2025 - 2024 - 2023 - 2022 - 2021 - 2020 - 2019 - 2018 - 2017 - 2016 - 2015 - 2014 - 2013 - 2012 - 2011 - 2010 - 2009 - 2008 - 2007 - 2006 - 2005 - 2004 - 2003 - 2002 - 2001 - 0 - All years
UMET seminar
Thursday, February 12 2026 10:30 - Grande salle de réunion, Institut Chevreul
Jean-Baptiste Jacob
ESRF
  Imaging Stress Heterogeneity and Grain-Scale Mechanics in Deforming Rocks with Synchrotron High-Energy X-ray Diffraction

Rock deformation and failure are governed by stress and strain heterogeneities that emerge at the grain scale and evolve across length scales, ultimately controlling macroscopic strength and rupture processes. Capturing these internal processes in situ, while a sample is under mechanical loading, remains a major challenge in both geoscience and materials science. High-energy synchrotron-based techniques such as three-dimensional X-ray diffraction (3DXRD) and its scanning variant (scanning-3DXRD) provide a unique route to address this problem by non-destructively probing bulk polycrystalline materials and reconstructing the crystallographic orientation and elastic strain of thousands of individual grains embedded within a three-dimensional volume.
This seminar will present recent methodological developments at the ESRF in 3DXRD and pencil-beam scanning-3DXRD, with a focus on their ability to resolve spatially heterogeneous stress fields and microstructural evolution during deformation. Applications to rock mechanics spans from operando experiments under quasi-static triaxial loading — revealing how stress builds up, localizes, and redistributes prior to failure — to post-mortem investigations of microstructures and heterogeneous residual strain fields in natural and experimentally deformed rocks. By delivering grain-resolved measurements of internal stress in deforming rocks at unprecedented resolution, these emerging approaches open new experimental avenues to explore the microphysical mechanisms governing deformation, rupture, and chemical reactions in rocks and other polycrystalline materials.

Defence
Friday, February 6 2026 13:30 - Amphithéâtre de l'Institut Chevreul
Yanis Calbert
UMET, MPGM
  Phase-field modelling of equilibrium and radiation induced segregation at grain boundaries in metallic alloys

We propose a novel phase-field (PF) model to enhance the description of grain bound-
aries (GBs) and its effect on solute segregation behaviour under irradiation. Conven-
tional PF models typically treat GBs as perfect sinks for point defects (PDs) such as
vacancies and interstitials, often assuming the system’s chemical potentials as homo-
geneous. We present two different approaches to tackle this limitation: (i) the use of a
density model to take into account the reduction in atomic density within GBs and cal-
culate the induced GB thermodynamic and elastic properties and (ii) the representation
of low-angle symmetric tilt grain boundaries (STGBs) by a stack of dislocations.
Furthermore, we introduce a mixing term in the model to account for ballistic dam-
age induced by displacement cascades. This study demonstrates how our model featur-
ing the density function correctly predicts equilibrium segregation and its impact on
radiation-induced segregation (RIS) in Fe-Cr, Ni-Cr, Ni-Fe and Ni-Ti alloys. These
alloys are serious candidates for Gen IV nuclear reactors. For each of these systems,
the influence of a large number of parameters such as the nominal composition, tem-
perature and dose rate has been thoroughly investigated in order to quantify the con-
tribution of thermal equilibrium segregation compared to RIS. More particularly, our
methodology successfully reproduces the well-known “W-shape” segregation profiles
in both GB descriptions and provides insights into spinodal decomposition in Fe-Cr
alloys and ballistic mixing effects on GB segregation.
This advanced PF model offers a better understanding of GBs behaviour under irra-
diation, potentially contributing to improved material design for nuclear applications.

UMET seminar
Thursday, February 5 2026 14:00 - Salle 202 (Bât. C6)
Luca Messina
CEA Cadarache
  Présentation du projet ANR PhaMMAT

Le projet ANR Jeune Chercheur PhaMMAT (« PHAse-field Multiscale integrated simulation of Microstructure And Thermomechanical evolution of nuclear fuels »), débuté en novembre 2025 et d'une durée de quatre ans, a pour objectif le développement d'un outil de simulation multiéchelle dédié à l'évolution couplée de la microstructure et des champs thermomécaniques dans les matériaux inorganiques. Ce projet vise spécifiquement à permettre la modélisation des phénomènes de restructuration dans les combustibles nucléaires comme application de référence. Pour ce faire, le code de simulation INFERNO fondé sur la méthode de champ de phase est développé afin de capturer l'évolution complexe de la microstructure polycristalline de l'oxyde d'uranium à l'échelle mésoscopique, en intégrant les défauts, les bulles de gaz de fission et les dislocations sous l'influence des contraintes thermomécaniques. L'originalité de l'approche repose sur un couplage autocohérent où, à chaque pas de temps, le modèle de champ de phase interagit avec un code résolvant les équations de la mécanique pour actualiser les champs d'entrée. Le modèle physique s’appuie sur des données issues de simulations à plus basses échelles et s'applique à des structures polycristallines 3D réalistes, générées par le code MEROPE. Ces travaux permettront de mieux comprendre l'interaction entre le réseau de bulles de gaz de fission et l'apparition de sous-joints de grains à fort taux de combustion, des phénomènes cruciaux pour les propriétés du combustible sous irradiation, afin de fournir des modèles prédictifs aux codes de performance. Enfin, ce cadre numérique transverse offre des perspectives prometteuses pour d'autres matériaux de l'énergie, tels que les batteries à l'état solide ou les céramiques fonctionnelles, présentant des problématiques microstructurales similaires.

 

 

The ANR Jeune Chercheur PhaMMAT project (“PHAse-field Multiscale integrated simulation of Microstructure And Thermomechanical evolution of nuclear fuels”), which started in November 2025 and runs for four years, aims to develop a multiscale simulation tool dedicated to the coupled evolution of microstructure and thermomechanical fields in inorganic materials. The project specifically seeks to enable the modeling of restructuring phenomena in nuclear fuels as a reference application. To this end, the INFERNO simulation code, based on the phase-field method, is being developed to capture the complex evolution of the polycrystalline microstructure of uranium dioxide at the mesoscale, incorporating defects, fission gas bubbles, and dislocations under the influence of thermomechanical stresses. The originality of the approach lies in a self-consistent coupling in which, at each time step, the phase-field model interacts with a code solving the equations of mechanics in order to update the input fields. The physical model relies on data derived from lower-scale simulations and is applied to realistic three-dimensional polycrystalline structures generated by the MEROPE code. This work will improve the understanding of the interaction between the fission gas bubble network and the formation of high-burnup subgrain boundaries—phenomena that are crucial for fuel properties under irradiation—in order to provide predictive models for fuel performance codes. Finally, this transverse numerical framework offers promising perspectives for other energy-related materials, such as solid-state batteries or functional ceramics, which exhibit similar microstructural challenges.

Defence
Monday, January 26 2026 14:00 - Amphitheatre Chevreul
Zainab Hareb
UMET-ISP
  Synthèse et caractérisation d'une nouvelle génération d’élastomères thermoplastiques aux propriétés thermomécaniques contrôlées
UMET seminar
Thursday, January 22 2026 10:30 - Grande salle de réunion, Institut Chevreul
Rémy Pierru
Bayerisches Geoinstitut (BGI)
  On the cooling of the Martian magma ocean: Implications for the presence of a basal melt layer at the core–mantle boundary
 
UMET - Unité Matériaux et Transformations
CNRS UMR 8207
Université de Lille
Bâtiment C6
59655 Villeneuve d'Ascq
France
Version 3.0
Mentions Légales - Contacter le webmaster